Optimal Taxation with Observable Labor Market Entry Shock and Limited Educational Resource

Andrew Yizhou Liu

April 22, 2019

Preliminary draft. Please do not circulate.

Latest Version

Abstract

I study optimal taxation and educational policy with limited educational resource and observable labor market entry shocks that persist through life-cycle. Human capital accumulation is unobservable which makes labor decision non-separable. In the optimal policy, educational fee increases with good entry shocks and there are both within- and across-cohort subsidization. The optimal taxation is shown to be implemented by an age- and income-contingent labor tax system and an income-contingent student loan repayment design with interest rates indexed to labor market entry shocks. The result emphasizes the need to take into consideration persistent labor market entry shocks in student loan design.

Keywords: labor market entry shock, optimal taxation, student loan design.
1 Introduction

It is well documented that labor market entry conditions for college graduates have large and persistent impact on lifetime earnings: a 5% rise in unemployment rate implies an initial loss of earnings of about 10 percent which fades to 0 by 10 years. The total loss of accumulated earnings amounts up to 5% (Oreopoulou et al. (2012), Liu et al. (2016), Kahn (2010), Altonji et al. (2016)). This means that the return to educational investment depends crucially on aggregate economic conditions upon labor market entry. How should limited education resource be distributed for cohorts with different labor market entry shocks? How does the educational policy interact with labor taxation when there is unobservable human capital accumulation after graduation? This paper tries to answer these questions.

I study the optimal Mirrleesean taxation with observable labor market entry shocks and limited educational resource. The model features a Ben-Porath economy with unobservable human capital accumulation after graduation. Agents differ by ability which is fixed but unobservable to the social planner. Using the first-order approach to re-write the incentive-compatible constraint, I derive the optimal labor wedge and educational fee formula. A closed-form solution is given in a three-period version of the model which shows that the optimal taxation and educational fees are higher for cohorts with good entry shocks.

In the optimal policy, the educational fee should be 1.8% higher for cohorts with a 5% labor market entry shock. The social planner redistributes the limited educational resource in a boom such that low ability agents experience an increase in educational resource while the opposite holds for high ability agents. This is because the marginal reduction in labor disutility due to education is more sensitive to aggregate shock when education level is low, as is the case for low ability workers. Thus, a 5% entry shock induces reduction in marginal labor disutility that more than offsets the 1.8% increase in educational fee, causing the low ability workers to choose higher levels of education to equalize marginal benefit and marginal cost. For the high ability workers, the marginal
reduction in labor disutility is less sensitive to aggregate shock due their higher level of education attainment. A 1.8% increase in educational fee hence lead them to reduce their educational choice.

The average optimal labor wedge is decreasing in early periods while increasing in later periods. The reason is that the social planner would like to encourage human capital accumulation when human capital is low, as is the case when agents just enter the labor market. The optimal taxation also differs across cohorts in which the cohort with good entry shock faces higher tax rates. This difference is large among low ability workers than among high ability workers. The intuition is that high ability workers have larger initial human capital due to education, making their labor supply and human capital accumulation decisions less responsive to entry shocks. This echos the finding in Oreopoulos et al. (2012), which shows that high ability workers are less affected by labor market entry shocks.

I show how the optimal policies can be implemented by an age- and income-contingent tax system and an income-contingent student loan repayment design with interests rate indexed to labor market entry shocks.

The result emphasizes the need to take into consideration labor market entry shocks in student loan design. Specifically, the current student loan interest rates and repayment rates are determined at the time of loan receipt and do not correlate with aggregate labor market conditions. Thus, cohorts that enter the labor market in a recession are likely to face more difficulties repaying their loans, have higher rate of default, and result in worse labor market outcomes. With student loan interest rates indexed to labor market entry conditions, an income-contingent student loan repayment policy not only allows within cohort insurance but also implements cross-cohort insurance, which is important when entry conditions have persistent impact on life-cycle earnings.

One concern is that such interest rate policies might distort students’ loan application as well as graduation time choice. Future research taking these into consideration is
The paper is closely related to Kapicka (2015), in which he studies optimal taxation with unobservable human capital accumulation. I augment the model in Kapicka (2015) with limited education resource and heterogeneous cohorts that differ in labor market entry shocks to study the interaction between educational resource allocation, labor market entry shocks, and optimal taxation. In the implementation of the optimal mechanism, I emphasize the role of income-contingent student loan design and find welfare gains similar to Findeisen and Sachs (2016). I introduce a novel feature of student loan interests rate that is indexed to labor market entry conditions in the implementation.

The rest of the paper is organized as follows: section 2 describes the model. section 3 introduces the planner’s problem and solve the optimal taxation and educational policy. section 4 illustrates the optimal policies in a simple three periods, two-cohorts example. In section 5, the model is calibrated to the U.S. data to quantitatively evaluate the welfare improvements. section 6 discusses implementation and section 7 concludes.

2 Model

The model is similar to Kapicka (2015). I augment the model with differential initial human capital based on educational choice and observable labor market entry shocks that persist through life-cycle. There is a continuum of heterogeneous agents with unobservable but fixed ability $\theta \in [\underline{\theta}, \overline{\theta}] \equiv \Theta$ with pdf $f(\theta)$. There are multiple cohorts differ by labor market entry shocks σ. Labor supply is z_t and output is given by $y_t = \sigma \theta z_t$.

The aggregate shock can be viewed as an ability shifter which captures the persistent effect of a one-time entry shock on income: if the one-time shock does not affect productivity, by law of large numbers, the income should recover once the recession ends.

In period 0, agents make educational choice a which together with their ability θ determines their human capital in period 1: $h_1 = h_1(\theta, a)$. Individuals live for T periods. The
disutility from labor supply is given by a function $W(z_1, z_2, ..., z_T, h_1)$ where I make explicit the dependence on initial human capital h_1. The disutility function is non-separable in labor supply, which is the case in the Ben-Porath model with unobserved human capital accumulation. Individuals are risk neutral with discount rate β. They maximize lifetime discounted consumption minus disutility from labor supply:

$$\max \sum_{t=0}^{T} \beta^t c_t - W(z_1, z_2, ..., z_T, h_1)$$ (1)

The planner’s problem is to choose a vector of allocations $(u(\theta, \sigma), z, a)$ to minimize the cost of delivering lifetime discounted utility $u(\theta, \sigma)$ to agent type θ and cohort σ such that the following conditions are satisfied:

Promise-Keeping Constraint :

$$u(\theta, \sigma) \geq \overline{U}(\theta, \sigma), \forall \theta \forall \sigma$$ (2)

Incentive-Compatible Constraint :

$$u(\theta, \sigma) \geq u(\hat{\theta}, \sigma) + W(z_1(\hat{\theta}), ..., z_T(\hat{\theta}), h_1(\hat{\theta}, a(\hat{\theta})))$$

$$- W\left(\frac{y_1(\hat{\theta})}{\sigma\theta}, ..., \frac{y_T(\hat{\theta})}{\sigma\theta}, h_1(\theta, a(\theta))\right)$$ (3)

Educational Resource Constraint :

$$\int_{\theta} \alpha(\theta, \sigma) f(\theta) d\theta \leq A, \forall \sigma$$ (4)

The promise keeping constraint equation (2) can also be thought of as a participation constraint with $\overline{U}(\theta, \sigma)$ given by the agents’ outside option. The incentive-compatible constraint differs from Kapicka (2015) in that reporting strategy now also affects education attainment and hence initial human capital h_1. The incentive constraint also differs by cohort, so that for a given type of agent θ, the constraint might bind in one cohort while not bind in the other cohorts. Limited educational resource constraint equation (4) is crucial for the interaction between taxation and educational policy. I assume the total educational
resource A is fixed across cohorts.

3 Optimal Policy

I first use a first-order approach to re-write the incentive-compatible constraint as:

$$
\begin{equation}
\begin{aligned}
u(\theta, \sigma) &= \int_{\theta}^{\theta} \sum_{t=1}^{T} W_{z_t}(z_1, ..., z_T, h_1) \frac{z_t}{\epsilon} d\epsilon \\
&+ \int_{\theta}^{\theta} W_{h_1}(z_1, ..., z_T, h_1) \frac{\partial h_1}{\partial \theta}(\epsilon, a(\epsilon)) d\epsilon + u(\theta, \sigma)\\
\end{aligned}
\end{equation}
$$

The relaxed incentive compatible constraint has three parts. The first part suggests that the labor supply allocation needs to make the agents reporting truthfully their ability. The second part decrees that educational resource allocation needs to align with individuals’ incentives, taking into consideration the effect of initial human capital and labor market entry shock on lifetime income. Under monotonicity conditions on $y(\theta)/\theta$ equation (5) is equivalent to equation (3).

The planner’s relaxed problem is to maximize total income subtract by labor disutility, subject to equations (2), (4) and (5):

$$
\begin{align*}
K(\{U\}_{(\theta, \Sigma)}) &= \min_{\mu, \lambda} \max_{\{z_t\}, a} \sum_{i=1}^{N} \int \left\{ \sum_{t=1}^{T} \left[\beta_t \sigma_i z_t - \mu(\theta, \sigma_i) \int_{\theta}^{\theta} W_{z_t}(z_1, ..., z_T, h_1) \frac{z_t}{\epsilon} d\epsilon \right] \\
&- \mu(\theta, \sigma_i) \int_{\theta}^{\theta} W_{h_1}(z_1, ..., z_T, h_1) \frac{\partial h_1}{\partial \theta} \frac{d\epsilon}{d\epsilon} \\
&- W(z_1, ..., z_T, h_1) + \lambda(\sigma_i)(A - a(\theta, \sigma_i)) \right\} f(\theta) d\theta \\
&+ \sum_{i=1}^{N} \int \left\{ (\mu(\theta, \sigma_i) - 1)u(\theta, \sigma_i) - \mu(\theta, \sigma_i)u(\sigma_i) \right\} f(\theta) d\theta \\
\end{align*}
$$

where $\mu(\theta, \sigma_i)$ is the Lagrangian multiplier on equation (5) and $\lambda(\sigma_i)$ is the Lagrangian multiplier on equation (4).
Changing the order of integration, we obtain the following equivalent formulation:

\[
L = \min_{\mu, \lambda} \max_{\{z_t\}_{t=1}^T} \sum_{i=1}^N \left\{ \sum_{t=1}^T \left[\beta_t \sigma_t z_t - W_{z_t}(z_1, \ldots, z_T, h_1) z_t X_{\mu}(\theta, \sigma_i) \right] \right. \\
- W_{h_1}(z_1, \ldots, z_T, h_1) \frac{\partial h_1}{\partial \theta} X_{\mu}(\theta, \sigma_i) \\
- W(z_1, \ldots, z_T, h_1) + \lambda(\sigma_i)(A - a(\theta, \sigma_i)) \right\} f(\theta) d\theta \\
+ \sum_{i=1}^N \int \left\{ (\mu(\theta, \sigma_i) - 1) u(\theta, \sigma_i) - \mu(\theta, \sigma_i) u(\theta, \sigma_i) \right\} f(\theta) d\theta
\]

(7)

where

\[
X_{\mu}(\theta, \sigma_i) = \frac{1 - F(\theta) \int_{\theta}^\infty \mu(\epsilon, \sigma_i) f(\epsilon) d\epsilon}{\theta f(\theta) \left(1 - F(\theta) \right)}
\]

(8)

is the cumulative distortion as in Kapicka (2015) and \(F(\theta)\) is the CDF of the ability distribution.

Taking the first order conditions, denote the derivative of labor disutility as \(W_x\) and second-order derivative as \(W_{xy}\). I derive the following lemma.

Lemma 1.

1. The labor wedge is given by the following equation:

\[
\frac{\tau_t}{1 - \tau_t} = (1 + \rho_t + \phi_t) X_{\mu}
\]

(9)

where \(\rho_t = \sum_{j=1}^T \rho_{t,j}\), \(\rho_{t,j} = \frac{W_{z_t z_j}}{W_{z_t}}\), and \(\phi_t = \frac{W_{h_1} \theta \partial h_1 / \partial a}{W_{z_t}}\).

2. The educational fee is given by:

\[
\lambda(\sigma_i) = - \sum_{t=1}^T \frac{\phi_t W_{z_t z_t} X_{\mu} \theta \partial h_1 / \partial a}{\theta \partial h_1 / \partial \theta} \\
- \left[W_{h_1 h_1} \frac{\partial h_1}{\partial \theta} \frac{\partial h_1}{\partial a} + W_{h_1} \frac{\partial^2 h_1}{\partial \theta \partial a} \right] \theta X_{\mu} \\
- W_{h_1} \frac{\partial h_1}{\partial a}
\]

(10)

3. The Lagrangian multiplier \(\mu(\theta, \sigma)\) and the promise-keeping constraint have the following
The labor wedge expression is similar to Kapicka (2015), with the augmentation of ϕ_t which determines how labor wedge should respond to the relation between initial human capital h_1 and future labor supply z_t. $\partial h_1 / \partial \theta$ is the marginal gain in initial human capital due to higher ability. Its effect on labor wedge depends on the sign of the marginal reduction in disutility due to higher initial human capital $W_{h_1 z_t}$. If $W_{h_1 z_t} > 0$, the labor wedge is increasing in the marginal gain of initial human capital in ability.

To understand this result, it is important to first understand the interpretation of $W_{h_1 z_t}$. W_{h_1} is the life-cycle reduction in labor disutility due to higher initial human capital. A positive $W_{h_1 z_t}$ implies that higher labor supply damps the marginal reduction in labor disutility. If initial human capital is increasing in ability θ, high ability agents benefit increasingly less from higher labor supply, making it more difficult more the planner to provide incentives. To counteract that effect, the planner increases labor wedge to reduce labor supply of high ability agents.

On the other hand, a negative $W_{h_1 z_t}$ implies a smaller labor wedge because the planner would like to encourage labor supply because it decreases overall disutility via W_{h_1}. Without initial human capital accumulation from education, this effect is absence and equation (9) reduces to $\tau_t / (1 - \tau_t) = (1 + \rho_t)X_\mu$, the same as in Kapicka (2015).

ρ_t includes cross derivative between z_t and labor supply in all periods. When labor disutility is separable, all cross derivatives would disappear. With unobservable human capital accumulation, labor disutility is non-separable.

The determination of educational fee consists from three parts. The first part is the cumulative effect of disutility reduction for all future labor supply decisions due to initial human capital. This can be seen clearly if we rewrite the first term on the right-hand side as:

$$[\mu(\theta, \sigma_i) - 1][u(\theta, \sigma_i) - U(\theta, \sigma_i)] = 0$$

(11)
of equation (10) as:

$$-\sum_{t=1}^{T} W_{zt} h_{t} X_{\mu} \frac{\partial h_{1}}{\partial a}$$

(12)

The marginal reduction in labor disutility, or marginal benefit of initial human capital in reducing future labor disutility, is given by $-\sum_{t=1}^{T} W_{zt} h_{t}$. This term captures the gain of higher initial human capital on labor supply. To obtain the effect of educational attainment, we multiply it by $\frac{\partial h_{1}}{\partial a}$.

The second term on the right-hand side of equation (10) represents the distributional effect of educational benefit. It is the sum of two parts. The first part captures the gain in educational attainment due to the curvature of the labor disutility function. If the marginal benefit of initial human capital is increasing, so that higher initial human capital implies larger marginal disutility reduction, it would push up the educational fee as agents desire more educational resource. The second part captures the complementarity between ability and education in determining initial human capital. A higher degree of complementarity means higher ability agents receive more marginal benefit from education.

The third term is the marginal reduction in labor disutility due to higher level of education. Because there is no incentive distortion for it, it is not augmented by the cumulative distortion.

Notice that the Lagrangian multipliers $\mu(\theta, \sigma)$ enters the cumulative distortion equation (8). It establishes a link between the promise-keeping constraint equation (2) and the cumulative distortion X_{μ}. The cumulative distortion is increasing in $\mu(\epsilon, \sigma)$, which implies that the larger the promised utility for agent types $[\theta, \bar{\theta}]$, the more taxes needs to be collected from agents of type θ. The more binding the promise-keeping constraint is, the smaller the Lagrangian multiplier μ hence X_{μ}. On the other hand, if the promise-keeping constraints never bind, which would be the case for a Rawlsian social planner, the link between the constraint and the cumulative distortion vanishes and X_{μ} is simply $(1 - F(\theta))/\theta f(\theta)$.

There is also an indirect link between the promise-keeping constraint and the educa-
tional fee. Tighter promise-keeping constraint would be a higher educational fee because the cumulative distortion enters equation (10). The intuition is that larger promised utilities require higher level of education, which increases the educational fee because of limited educational resources.

4 An Illustrative Example

To better understand the results, I work out a fully solved example with three periods and two cohorts. I first motivate the non-separable labor disutility function \(W \) using the Ben-Porath model as in Kapicka (2015). There is unobservable human accumulation \(\{h_{t+1}\}_{t\leq T} \) and individuals minimize the cost of labor supply:

\[
W(z_1, ..., z_T, h_1) = \min_{\{h_{t+1}\}} \sum_{t=1}^{T} \beta^t V(s_t, l_t) \tag{13}
\]

where \(s_t \) is human capital accumulation effort and \(l_t \) is effective labor effort. \(V(s, l) \) is per period disutility of human capital accumulation and effective labor effort. It has strictly positive first order derivatives: \(\partial V/\partial s > 0, \partial V/\partial l > 0, \forall s, l > 0. \)

I use the following functional forms: \(V = s_t l_t, s_t = \exp(h_{t+1} - h_t) \), and \(l_t = z_t \exp(-h_t) \).

This choice is for the purpose of obtaining analytic solutions. In general, I need to require that human capital accumulation effort is increasing in human capital stock next period \(h_{t+1} \) and the effective labor effort is decreasing in human capital stock. With \(T = 2 \), I derive the labor disutility function as:

\[
W(z_1, z_2, h_1) = \frac{1}{2} e^{-h_1} z_1^2 z_2^2 \tag{14}
\]

This simple example illustrates how unobservable human capital accumulation leads to non-separable labor supply disutility function.

I further assume that there are two cohorts indexed by \(\sigma_h > \sigma_l \). Referring to lemma 1,
setting the functional form $h_1 = \theta + a$, the labor wedges reduce to:

$$
\tau_1(\theta, \sigma_i) = \frac{(4 - \theta)X_\mu(\theta, \sigma_i)}{(4 - \theta)X_\mu(\theta, \sigma_i) + 1}, \quad i = h, l
$$

(15)

The take-away are two-fold. First, due to non-separability, period 1 and period 2 labor supply play equal role in labor disutility function equation (14) even though the agent discount the disutility from effective labor effort in the second period, hence the optimal labor wedge is the same in both periods. If the labor disutility is separable, the agent would discount future labor disutility more so the optimal labor wedge would increase. The second take-away is that labor wedge is increasing in the cumulative distortion X_μ which in turn depends on the baseline promised utility $U(\theta, \sigma_i)$. An egalitarian social planner would equalize the baseline promised utilities across cohorts, making the promise-keeping constraints less likely to bind in a boom, i.e. when σ is larger. The result is an increase in the cumulative distortion X_μ hence higher taxes for cohorts with a good labor market entry shock. I state this in the lemma 2

Lemma 2. The optimal labor wedge is increasing in labor market entry shock in the sense that cohorts with good shocks face higher labor wedge.

Educational fee is given by:

$$
\lambda(\sigma_i) = \left[(2 - \frac{\theta}{2})X_\mu(\theta, \sigma_i) + \frac{1}{2} \right] e^{-\left(\theta + a\right)z_1^2z_2^2}
$$

(16)

In this specific example, the “marginal benefit” of education, which includes both income gain from education and incentive provision, is decreasing in ability and education. To equalize marginal cost and “marginal benefit”, the social planner needs to allocate more educational resource to low ability agents. This is easily seen from equation (16) since the right-hand side is decreasing in θ and a.

The educational fee $\lambda(\sigma_i)$ depends on cumulative distortion and labor supply. I show
previously that the cumulative distortion is increasing in σ_i. The intuition is that it is easier to satisfy the promise keeping constraint when agents face a good entry shock. It is also the case that labor supply is higher when agents face good shocks, so that the educational fee is also increasing in labor market entry shocks:

Lemma 3. *The optimal educational fee is higher for cohorts with good entry shocks and lower for cohorts with bad entry shocks.*

Equation (14) also implies that the labor disutility function is convex in initial human capital. The negative of labor disutility is hence concave, which means that the marginal reduction in disutility due to higher initial human capital is decreasing. This key feature will be reserved in section 5 which determines the concave shape of the educational resource allocation.

5 Quantitative Analysis

In this subsection, I numerically solve the model and discuss key features on the optimal taxation and how it can be implemented. I choose the disutility from accumulation unobservable human capital based on Kapicka (2015) as:

$$V(l, s) = \frac{(l + s)^1 + \nu^{-1}}{1 + \nu^{-1}}$$

Human capital evolves according to:

$$h_{t+1} = G(h_t, s_t) = (1 - \delta)h_t + \delta(h_t s_t)^\alpha$$

Effective labor effort is $l_t = z_t / h_t$.

The initial human capital depends on educational choice and ability via:

$$h_1 = h_1(\theta, a) = \gamma a \log(\theta)$$
The cross-partial derivative is $\gamma/\theta > 0$. This means that high ability agents gain more initial human capital through education.

Labor disutility is implicit determined in the Ben-Porath economy as in equation (13). Due to unobservable human capital accumulation, labor supply decision is non-separable. This allows non-trivial cross-Frisch elasticities of labor and dependence of all future marginal labor disutility on initial human capital.

In the baseline calibration, I follow the literature and use the following tax schedule:

$$
\tau(y) = \kappa_0\left[y - (y^{-\kappa_1} + \kappa_2)^{-1/\kappa_1}\right] + (\tau^c + \tau^{ss})y
$$

I first calibrate the model using the baseline tax schedule and use it in the promise-keeping constraint when discussing optimal taxation and education policy. The agents ability distribution is Pareto-Lognormal with parameters (m_1, m_2, λ).

The following parameterization is used to quantify the model. I calibrate γ by equalizing the educational fee with average per period income. I set $T = 38$ at annual frequency. The other parameter values are taken from the literature.

There are two cohorts indexed respectively by σ_h and σ_l. The only place that aggregate shocks enter the economy is by changing the labor productivity $y_t = \sigma\theta z_t$. I choose a typical shock of 5%, consistent with empirical evidence in Oreopoulos et al. (2012).

Two sets of policies are considered. The first one is the baseline policy where the tax schedule is given by equation (17). The second set of policy is the optimal labor tax given by equation (9). The promised utility is obtained from the baseline policy. Importantly, the promised utility depends on labor market entry shock.

5.1 Optimal Education Resource Allocation

I first compare the educational choice distribution across cohorts under the two policies. In both policies, the educational resource distributions closely resemble one another during
Table 1: Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Sources/Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.96</td>
<td>Interest rate = 0.04</td>
</tr>
<tr>
<td>ν</td>
<td>0.25</td>
<td>Kapicka (2015)</td>
</tr>
<tr>
<td>α</td>
<td>0.5</td>
<td>Browning et al. (1999)</td>
</tr>
<tr>
<td>δ</td>
<td>0.0114</td>
<td>Hugget et al. (2011)</td>
</tr>
<tr>
<td>m_1</td>
<td>5.2483</td>
<td>Kapicka (2015)</td>
</tr>
<tr>
<td>m_2</td>
<td>0.4540</td>
<td>Kapicka (2015)</td>
</tr>
<tr>
<td>λ</td>
<td>2.0530</td>
<td>Kapicka (2015)</td>
</tr>
<tr>
<td>γ</td>
<td>0.15</td>
<td>Educational fee = Average income</td>
</tr>
<tr>
<td>τ_c</td>
<td>0.052</td>
<td>Mendoza et al. (1994)</td>
</tr>
<tr>
<td>τ_{ss}</td>
<td>0.124</td>
<td>Kapicka (2015)</td>
</tr>
<tr>
<td>κ_0, κ_1</td>
<td>0.258, 0.768</td>
<td>Gouveia and Strauss (1994)</td>
</tr>
<tr>
<td>κ_2</td>
<td>0.0278</td>
<td>Kapicka (2015)</td>
</tr>
<tr>
<td>σ_h, σ_l</td>
<td>1.05,1</td>
<td>Oreopoulos et al. (2012)</td>
</tr>
</tbody>
</table>

boom and during bust. In both the baseline policy and the optimal policies, the educational fee should be 1.8% larger when the cohort receives a 5% good aggregate shock, in order to equalize educational resources. This suggests the return to education investment is concave.

![Figure 1: Educational Resource Allocation](image)

Another common feature in both the baseline and the optimal policies is the redistribution of educational resources across agent types. Figure 1 compare educational choices across cohorts for different types of individuals.

What is interesting is that good shock benefits the low ability agents more as more
educational resources are directed towards them in a boom compared to a bust. On the other hand, high ability agents receive less educational resource in a boom than in a bust. This means when good shock hits, the social planner redistribute the limited educational resource so that low ability agents get more education while high ability agents get less. To build intuition, let us refer back to equation (12) which now becomes:

$$-\sum_{t=1}^{T} W_{z_t h_1} z_t X_{t} \mu \gamma \log(\theta)$$

(18)

It can be shown that the other terms in equation (10) are negligible compared to equation (18), the marginal reduction in labor disutility. Its concavity of $W_{z_t h_1}$ in (z_t, h_1) is the main driving force of the result. For low ability workers, labor supply and educational choice are small, and the marginal disutility reduction $W_{z_t h_1}$ is quite sensitive to aggregate shocks. In other words, a good shock would lead to a large disutility reduction for low ability agents, hence higher marginal benefit. Even though low ability agents face a fee increase in boom, their marginal benefit from education increases more than the fee increase. In order to equalize benefit and cost, they choose higher educational levels which decreases marginal benefit. For high ability workers, the marginal disutility reduction is less sensitive to aggregate shocks due to higher level of labor supply and educational choice. If educational fee is equalized across cohorts, high ability workers would only increase their educational choice slightly when facing a good entry shock. The increase in educational fee more than offsets the small increase in educational choice. Instead, it causes high ability agents to choose lower levels of education.

5.2 Optimal Taxation

The optimal taxation takes into account the sum of own- and cross-Frisch-elasticity ρ_i and educational tax deduction ϕ_t. With unobservable human capital, labor decisions are non-separable, so that cross-Frisch-elasticity can be positive or negative, depending on whether
labor supply across periods are substitutes or complements.

I first show the average tax rate, weighted by the ability distribution $f(\theta)$, in figure 2. The left-hand-side plots the baseline average tax rate by age and the right-hand-side plots the optimal tax rate by age. The hump-shaped tax profile in the baseline arises from the hump-shaped labor supply over the life-cycle, and the gap between the boom- and bust-baseline tax rate remains almost constant through out.

![Baseline Tax Schedule](image1)
![Optimal Tax Schedule](image2)

Figure 2: Average Tax Rates

On the other hand, the optimal tax rates is inversely hump-shaped. This is due to negative cross-Frisch elasticity when agents just enter the labor market. In other words, labor supply in early periods is substitute for labor supply in later periods due to human capital accumulation. The social planner thus would like to set a high tax rate to discourage labor supply early on hence encouraging human capital accumulation. As agents age, the gain of human capital accumulation decreases, the social planner would instead like to encourage labor supply, leading to declines in tax rates. Towards the end of the labor market, there is little incentive for human capital accumulation while the agents have high-levels of labor supply. The disutility of labor hence dominates, and the tax rates increase again to discourage labor supply.

The gap between tax schedule across cohorts is much smaller under the optimal policy. This reflects damped labor response to aggregate shock. The intuition is that the optimal taxation encourages human capital accumulation early in the life-cycle, which allows the
agents to accumulate more human capital and be less sensitive to productivity shocks. This is why the tax gap diminishes later on in the life-cycle. As another verification, I compare the average tax among low ability workers and among high ability workers across cohorts. Figure 3 shows indeed the tax gap across cohorts are much more salient among low ability workers. This is because high ability workers have higher initial human capitals hence are less responsive to aggregate shocks.

![Figure 3: Average Tax Rates by Ability](image)

5.2.1 Decomposition of Optimal Taxation

Equation (9) shows that the optimal taxation takes into consideration both labor elasticity effect ρ_t and initial human capital effect ϕ_t. To understand how each component contributes to the optimal taxation, I decompose it by respectively setting ρ_t and ϕ_t to zero.

The labor elasticity effects dominate over the initial human capital effect: not only is the implied tax rates much larger than those of the educational effect, its overall shape closely tracks that of the optimal taxation. The initial human capital effect makes it clear that human capital accumulation is more important early on: the social planner monotonically decreases tax rates to first encourage human capital accumulation and then to encourage labor supply.
6 Implementation

In this section I discuss several implementations of the optimal policy in section 3. It can be shown that the optimal taxation can be implemented by a history-dependent tax system. However, in reality history-dependent tax system is very rare. \(^1\) I show how to implement the optimal policy using history-independent taxation.

6.1 A Static Income Tax System and an Income-Contingent Student Loan Design

Note first that even if the tax system cannot be made history-dependent, the cost-minimizing social planner would still consider a tax reform because she is aware of the productivity response from a change in taxation. This contrasts a naive social planner who would never change the tax system because under the current tax code, the allocations are already “optimal” to the social planner. I also assume that the tax system can be made age-dependent. I also assume that income-contingent student loan can be made dependent on labor market entry shock. This can be implemented by indexing student loan interest rates to labor market entry conditions.

The way the social planner design a history-independent income tax system and ed-

\(^1\)The optimal allocation can be implemented by history-independent tax system under very restrictive conditions. See Kapicka (2006).
ucational fee policy is as follows: she first calculates the labor wedge of the cohort with bad entry shocks, at every period. Because the tax can be made age-dependent, if there is only one cohort, this tax system essentially implements the optimal taxation in section 3 if there is a one-to-one mapping between income at each period and ability. It is easy to show numerically that this is indeed the case.

However, the optimal taxation in section 3 takes into account the entry shock so that different cohorts face different tax rates. This is not feasible under a single income- and age-dependent tax system. However, with the help of educational policy, and specifically an income-contingent student loan repayment design, the social planner can implement the optimal policy under some conditions. Assumption 1 gives the conditions.

Assumption 1.

1. For agents with the same ability, there is a one-to-one mapping between optimal labor wedge and labor market entry shock in each period.

2. For agents with the same age, there is a one-to-one mapping between ability and income in each cohort.

Both assumption can be easily shown to hold under monotonicity of $y(\theta)$.

Under these two conditions, the social planner can hence differentiate effective labor tax across cohorts by using income contingent student loan repayment policy. The social planner normalizes the student loan repayment so that the cohort with bad entry shock need not repayment student loan. Let $T_i(y(\theta))$ be the income- and age-contingent tax schedule. Let $m(y(\theta), \sigma)$ be the income- and entry-shock-contingent student loan repayment. The social planner sets the tax and the student loan repayment rate to be such that

$$1 - \tau_i(\theta, \sigma_i) = (1 - T_i(y(\theta)))(1 - m(y(\theta), \sigma_i)), \quad i = l, h$$

where $\tau_i(\theta, \sigma_i)$ is the optimal labor wedge in equation (9). Only assumption 1 is needed because t and σ are discrete. Compared to Stantcheva (2017) in which there is only an income- and age-contingent tax policy, the addition of an income- and entry-shock con-
tingent student loan repayment policy allows the social planner to implement the optimal policies.

This result emphasizes the need to take into consideration labor market entry shocks in student loan design. Specifically, the current student loan interest rates and repayment rates are determined at the time of loan receipt and do not correlate with aggregate labor market conditions. Thus, cohorts that enter the labor market in a recession are likely to face more difficulties repaying their loans, have higher rate of default, and result in worse labor market outcomes.

A simple regression shows the lack of correlation between student loan interest rates and aggregate labor market conditions. Table 2 regresses the interest rates of the federal direct unsubsidized loans on unemployment rates or future unemployment rates. The result shows that there is no correlation between the interest rates and contemporaneous unemployment rates, nor is there correlation with future unemployment rates. This implies that the cost of financing higher education via student loans is disconnected with the potential gain from educational investment. The analysis in this section suggests that there might be welfare improvement if the student loan interest rate is indexed to the labor market entry conditions so that different cohorts face different loan repayment rates. This introduces a way to cross-subsidize cohorts with bad entry shocks by cohorts with good entry shocks.

The potential concern of this policy is that it might distort students’ loan application, and, more importantly, distort their graduation time choice. A comprehensive analysis taking these into consideration is outside the scope of this paper and left for future research.

2 The federal direct loan is the large student loan program. Over 90% of current outstanding student loan is federal loan.
Table 2: Federal Student Loan Interest Rates and Unemployment

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment rate</td>
<td>0.0194</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.unemployment rate</td>
<td>0.118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.130)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2.unemployment rate</td>
<td>0.202</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.143)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3.unemployment rate</td>
<td>0.182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F4.unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.156)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
</tr>
</tbody>
</table>

The interest rates are on the federal direct unsubsidized loan. F is the lead operator. Hence F.unemployment rate means unemployment rate one year from current observation.

7 Conclusion

I study optimal taxation and educational policy in an environment in which with limited educational resource and observable labor market entry shocks that persist through life-cycle. Human capital accumulation is unobservable which makes labor decision non-separable. In the optimal policies, the educational resource allocation varies with entry shocks, with low ability agents receiving more while high ability agents receiving less with a good entry shock. The optimal labor wedge decreases in early periods when human capital is low to incentivize human capital accumulation. The pattern reverses when human capital is high. I calibrate the model to the U.S. data and show that there are more subsidization across cohorts under the optimal policy. I show how to implement the optimal taxation with an age- and income-contingent labor tax system and an income-contingent student loan repayment design with interest rates indexed to labor market entry shocks.

The result emphasizes the need to take into consideration labor market entry shocks in student loan design. Specifically, the current student loan interest rates and repayment rates are determined at the time of loan receipt and do not correlate with aggregate labor
market conditions. Thus, cohorts that enter the labor market in a recession are likely to face more difficulties repaying their loans, have higher rate of default, and result in worse labor market outcomes. With student loan interest rates indexed to labor market entry conditions, an income-contingent student loan repayment policy not only allows within cohort insurance but also implements cross-cohort insurance, which is important when entry conditions have persistent impact on life-cycle earnings.

References

